SEMESTER I

PHYSICS-DSC 1 A: MECHANICS (PCMP-311)

(Credits: Theory-04)

Theory: 64 Lectures

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect o a parameter. (4 Lectures)

Ordinary Differential Equations:1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients.

(6 Lectures)

Laws of Motion: Frames of reference. Newton's

Laws of motion. Dynamics of asystem of particles. Centre of Mass.

(10 Lectures)

Momentum and Energy:Conservation of momentum.Work and energy.Conservation of energy.Motion of rockets.(6 Lectures)

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (5 Lectures)

Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field(motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).

(8 Lectures)

Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions.Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. (6 Lectures)

Elasticity: Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting coupleon a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method **(8 Lectures) Special Theory of Relativity:** Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities.

(7 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate.

Reference Books:

- University Physics. FW Sears, MW Zemansky and HD Young13/e, 1986. Addison-Wesley
- Mechanics Berkeley Physics course, v.1: Charles Kittel, et. Al. 2007, Tata McGraw-Hill.
- Physics Resnick, Halliday & Walker 9/e, 2010, Wiley
- Engineering Mechanics, Basudeb Bhattacharya, 2nd edn., 2015, Oxford UniversityPress
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.