BSPH-106

Applied Physics-I Lab

L	Т	Ρ	С
0	0	2	1

Total Laboratory Load: 4 months (16 Lab period = 2hrs. each)

Course Outcomes:

After successful completion of the Physics-I laboratory course, students should be able to:

- **CO1:** Verify the theoretical formulations/ concepts of physics.
- **CO2:** Know the art of recording the observations of an experiment scientifically.
- CO3: Learn by doing.
- **CO4:** Handle and operate the various elements/parts of an experiment.
- **CO5:** Understand the importance of an experiment in engineering & technology.
- **CO6:** Preparing for vocational skills at diploma level
- **CO7:** Standardization of the knowledge acquired

					CO	/PO M	apping	5				
	S-strong, M-medium and W-weak indicate the strength of correlation											
COs		Programme outcomes (POs)										
	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1	1	2	1	3	1	2	2	2	2	3	2	1
CO2	1	2	1	2	1	2	2	3	2	2	2	3
CO3	1	1	1	2	2	2	3	2	2	3	3	3
CO4	2	1	2	2	3	2	3	3	3	3	3	3
CO5	1	1	1	2	2	3	2	3	3	2	3	3
CO6	1	1	2	2	1	2	3	3	2	3	3	3
CO7	2	1	1	2	2	3	3	3	3	3	3	2

BSPH-106	Applied Physics-I Lab
----------	-----------------------

L	Т	Ρ	С
0	0	2	1

Total Laboratory Load: 4 months (16 Lab period = 2hrs. each)

List of Experiments:

- To measure the dimensions of a geometric object, including its length, breadth, and height, using a Vernier caliper, and then calculate its volume based on these measurements.
- 2. To measure the diameter of a wire or rod by using screw gauge and subsequently determine its area of cross-section.
- 3. To determine the height or depth at the center of a given lens or mirror and to calculate its radius of curvature using a Spherometer.
- 4. To measure the time period of a simple pendulum using a stopwatch and then calculate the acceleration due to gravity (g).
- 5. To measure the mass of an object using an electronic balance and then calculate its density.
- 6. To study the relationship between the force of limiting friction and the normal reaction on horizontal plane using a block.
- 7. To determine the force or spring constant using Hooke's law.
- 8. To determine the viscosity of glycerine by utilizing Stokes' method, which involves measuring the terminal velocity of a spherical body falling through glycerine.
- 9. To determine the Young's Modulus of a rectangular bar by bending, utilizing the formula for the bending stress in a beam and measuring the corresponding strain.
- 10. To determine the surface tension of water using the capillary rise method, by measuring the height of water rise in a capillary tube.
- 11. To determine the Stefan-Boltzmann constant (σ) by measuring the total radiation emitted by a blackbody radiator at different temperatures.
- 12. To determine the frequency of the tuning fork using a sonometer.