PH-9151 Physics Lab-II (Atomic & Nuclear Physics and Microwaves)

L	T	P	C
0	0	8	4

Course Outcomes:

After successful completion of the course, the students should be able to

CO1: Verify the theoretical formulations/ concepts of physics.

CO2: Know the art of recording the observations of an experiment scientifically.

CO3: Learn by doing.

CO4: Handle and operate the various elements/parts of an experiment.

CO5: Understand the importance of physics experiments in engineering & technology.

Name and Address of the Owner, where	CO/PO Mapping S-strong, M-medium and W-weak indicate the strength of correlation												
1	COs												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	S	W	W	W		W		M	S	S	S	S
1	CO2	W	S	S	M	S	W	M	W	M	W		M
1	CO3	M	W	S	S	W	S	S	S	S	M	S	S
111111111111111111111111111111111111111	CO4	S	S	M	M	M	M	M		M	S	M	W
1	CO5	M	S	S	W	S	M	M	M			W	W

PH-9151 Physics Lab-II (Atomic & Nuclear Physics and Microwaves)

L	T	P	C
0	0	8	4

List of Practical: Atomic and nuclear Physics:

1. Study of photoelectric effect using photocell:

- a) To plot the current-voltage characteristics of a given photocell at constant irradiance
- b) To measure the photo-current as a function of irradiance at a constant voltage.
- c) To determine Planck's constant
- d) to verify the inverse square law
- 2. To determine the e/m ratio by
 - (a) Millikon's oil drop method
 - (b) Zeeman splitting of the green mercury line using Fabry-Perot etalon.
- 3. To setup ESR spectrometer and to determine the g-factor of electron using sample of DPPH.
- 4. To investigate the nuclear spin resonance in Glycerine, Polystyrene and Teflon with NMR spectrometer
- 5. To determine the absorption coefficient of gamma-rays in given material using NaI(Tl) detector.
- 6. To determine the absorption coefficient of beta particles in aluminum using GM counter
- 7. To study: (a) X-rays produced by X-ray tube (b) absorption of copper K X-rays in Al by varying the thickness of Al targets.
- 8. (a) to determine the Planck's constant and (b) to verify Moseley's law using X-ray apparatus.
- 9. To find absorption coefficient of Copper K X-rays in V, Cr, Mn, Fe, Co, Ni, Cu and
- 10. To study the diffraction spectrum of Copper K X-rays diffracted from given single crystal.
- 11. To study the diffraction spectrum of Copper K X-rays diffracted from given crystalline powder.

Microwaves:

- 12. To find the wavelength of microwaves using Klystron-tube based X-band microwavebench working in TE₁₀ mode and also to determine the VSWR at different loads.
- 13. To determine the dielectric constant of given liquid at X-band frequency using Von-Hippel's method.

14. To study Gunn oscillator as a source of microwaves and to find the wavelength of

15. To set up the X-band resonator cavity and use it to determine the dielectric constant of given material. Total: 96 Hrs

Practicals: 96 Hrs

class

Sant Langowal Inst of Engg. & Tech. Department of Physics TONG! MT (Saudin)