w.e.f. July, 202

COMPUTATIONAL PHYSICS LAB

Course outcomes

		T	P	C
1	-	-	8	4
1 ()	U	0	سسا

After successful completion of the course, the students should be able to

CO1: To have knowledge of programming techniques especially in C++

CO2: To have knowledge of Data types, Operators and expressions

CO3: To know how to handle data files

CO4: familiarity with special methods such as Simpson's 1/3rd, Euler's, Rugne-Kutta

method

CO5: applying learned programming to typical physics problems.

CO/PO Mapping												
S-strong, M-medium and W-weak indicate the strength of correlation COs Programme outcomes (POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	W	W	W	W		M	S	S	S	S
CO2	S	M	S	M	S	W	M	S	M	W		M
CO3	M	W	M	W	W	S	S	S	S	M	S	S
CO4	W	S	S		S	M	M		M	S	W	W
CO5	M	W	S	W	W		S	S		. 1	S	W

PH-8251

COMPUTATIONAL PHYSICS LAB

L	T	P	C
0	0	8	4

Programming with C++ List of general programs

- 1. Find the nature of the roots as well as value of the roots of quadratic equation.
- 2. Add two matrices.
- 3. Multiply two matrices.
- 4. Sort a list of *n* integer numbers in descending order.
- 5. Find the solution of non-linear equation using Bisection method.
- 6. Find the solution of non-linear equation using Newton's method.
- 7. Fit a straight line of type y = ax + b through a given set of data points.
- 8. Find the numerical integration of a function using Trapezoidal rule.
- 9. Find the numerical integration of a function using Simpson's 1/3rd rule.
- 10. Find the numerical solution of ordinary differential equations using Euler's method.
- 11. Find the numerical solution of ordinary differential equations using 4rth order Runge-Kutta method.
- 12. Find the solution of system of linear equations using Gauss-Seidel method.

List of Physics Problems

- 1. Write a program to study graphically the EM oscillations in a LCR circuit (use Runge-Kutta Method). Show the variation of (i) Charge vs Time and (ii) Current vs Time.
- 2. Study graphically the motion of falling spherical body under various effects of medium (viscous drag, buoyancy and air drag) using Euler method.
- 3. Study graphically the path of a projectile with and without air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 4. Study the motion of an artificial satellite.
- 5. Study the motion of
 - (a) 1-D harmonic oscillator (without and with damping effects).
- (b) two coupled harmonic oscillators. Draw graphs showing the relations:
- I. Velocity vs Time II. Acceleration vs Time III. Position vs Time, also compare the numerical and analytical results.
- 6. To obtain the energy eigenvalues of a quantum oscillator using the Runge-Kutta
- 7. Study the motion of a charged particle in: (a) Uniform electric field, (b) Uniform Magnetic field, (c) in combined uniform electric and magnetic fields. Draw graphs in each case.
- 8. Use Monte Carlo techniques to simulate phenomenon of
 - (i) Nuclear Radioactivity. Do the cases in which the daughter nuclei are also unstable with half life greater/lesser than the parent nucleus.
 - (ii) to determine solid angle in a given geometry.
 - (iii) simulate attenuation of gamma rays/neutron in an absorber and
 - (iv) solve multiple integrals and compare results with Simpson's method.
- 9. To study phase trajectory of a Chaotic Pendulum.
- 10. To study convection in fluids using Lorenz system.

BOOKS

- 1. Numerical Recipes in C++ The Art of Scientific Computing, William H. Press, Saul A. Teukolsky. William T. Vetterling and Brian P. Flannery, (Cambridge), 2nd ed. 2002.
- 2. A First Course in Computational Physics: P.L. DeVries (John Wiley) 2000.
- 3. An introduction to Computational Physics: Tao Pang (Cambridge), 2nd ed. 2006.
- 4. Computer Applications in Physics: S. Chandra (Narosa), 2006.
- 5. Computational Physics: R.C. Verma, P.K.Ahluwalia and K.C. Sharma (New Age), 2005.
- 6. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill), 5th ed. 2011.

e (50) Department of Physics Sant Longowal Inst of Engg. & Tech 24 ONGONAL (Sangrur)