PH-8151 Physics Laboratory-I (Electronics, Optics and Microwaves)

	6 1		
T	T	P	
L	1		1
0	0	8	4
•			

Course Outcomes:

After successful completion of the course, the students should be able to

CO1: verify the theoretical formulations/ concepts of physics.

CO2: know the art of recording the observations of an experiment scientifically.

CO3: learn by doing.

CO4: handle and operate the various elements/parts of an experiment.

CO5: understand the importance of physics experiments in engineering & technology.

CO/PO Mapping												
S-strong, M-medium and W-weak indicate the strength of correlation												
COs Programme outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	-PO11_	PO12
001		1 0 -			W	W		M	S	S	S	S
CO1	S	W	W	M				141			M	M
CO2	S	S	S	M	S	W	M		M	W	M	
					W	S	S	S	S	M	S	S
CO3	S	M	M	W							117	
CO4	S	S	W		W	M	M	M	M	S	W	
004	5			***			S	M		W	M	W
CO5	M	W	S	W	S		3	IVI		- **	1.2	

PH-8151 Physics Laboratory-I (Electronics, Optics and Microwaves)

L	T	P	C
0	0	8	4

List of Practical

Electronics:

- 1. The application of operational amplifier:
 - I. as integrator and differentiator
 - II. inverting and non-inverting amplifier
- 2. To study:
 - I. RC phase shift oscillator
 - II. Wein bridge oscillator
- 3. To study the characteristics of SCR and TRIAC
- 4. To study the characteristics of UJT and MOSFET

Optics:

- 5. To determine the wavelength of He-Ne laser by:
 - a) using diffraction method
 - b) using Michelson-Morley interferometer
- 6. To setup polarization by reflection and:
 - a) to determine Brewster's angle for glass surface

- b) to verify Malus law
- 7. Based upon Faraday's effect using flint glass square to determine Verdet's constant and also to verify the relationship between Verdet's constant and wavelength of light used.
- 8. To setup optical fiber kit and to:
 - a) study optical coupling
 - b) determine the NA of fiber
 - c) determine the transmission loss coefficient by the cut-back method
 - d) implement the experiment of optical fiber for pressure sensing.
- 9. To setup experiment for 'Acousto-optic effect' and to
 - a) calculate the diffraction efficiency of acousto-optic device
 - b) calculate the Bragg angle
 - c) calculate the velocity of sound in acousto-optic medium
 - d) demonstrate optical communication using acousto-optic modulation
- 10. To construct/assemble a:
 - a) Michelson interferometer and measuring the refractive index of air
 - b) Sagnac interferometer
 - c) Mach-Zehnder interferometer
- 11. To setup the holography kit and to
 - a) record and reconstruct the hologram
 - b) make the holographic grating
- 12. To study the different modes of He-Ne laser with an oscilloscope by using He-Ne laser mode analyzer.
- 13. To set up the Laser Raman Spectrometer and to acquire the Carbon Tetra Chloride (CCl₄) spectrum
- 14. To set the Fourier optics apparatus and to study optical image
 - a) addition and subtraction
 - b) differentiation

Microwaves:

- 15. To study the mode characteristics of a reflex Klystron and hence to determine the mode number, transit time, electronic tuning range and electronic tuning sensitivity using micro-ammeter as well as CRO
- 16. To find the wavelength of microwaves using X-band microwave-bench working in TE₁₀ mode and also to determine the VSWR at different loads.
- 17. To determine the complex permittivity of given liquid at X-band frequency using Von-Hippel's method.

Practicals: 96 Hrs

Total: 96 Hrs

Head
Department of Physics
Sani Longowal Inst of Engg. & Tech.
LONGC WAL (Sangrur)
14