PH-9251 Physics Lab-III (Materials Science and Digital Electronics)

L	T	P	\mathbf{C}
0	0	8	4

Course Outcomes:

After successful completion of the course, the students should be able to

CO1: verify the theoretical formulations/ concepts of physics.

CO2: know the art of recording the observations of an experiment scientifically.

CO3: learn by doing.

CO4: handle and operate the various elements/parts of an experiment.

CO5: understand the importance of physics experiments in engineering & technology.

CO/PO Mapping												
S-strong, M-medium and W-weak indicate the strength of correlation												
COs	Programme outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	W	W	W		W		M	S	S	S	S
CO2	S	S	S	M	S	W	M	W	M	W	3	
CO3	S	W	M	W	W	S	S	S	S		C .	M
CO4	S	S	W		W	$\frac{J}{M}$	$\frac{S}{M}$	-5		M	S	S
CO5	M	W	S	W	S	141	S	M	M	S	W	W
							3	M			M	W

PH-9251 Physics Lab-III (Materials Science and Digital Electronics)

-	T	P	C
\mathbf{L}_{\perp}		-	4
0	g	8	4
U			

Condensed Matter Physics:

- 1. To trace hysteresis loop and calculate the retentivity, coercivity and saturation magnetization.
- 2. To determine the dielectric constant of ferroelectric ceramics and also to determine the Curie temperature of ferroelectric ceramics as well as ferrite material.
- 3. To determine the band gap of a semiconductor using:
 - a) PN junction diode.
 - b) four probe method
- 4. To study Hall effect in a semiconductor and to determine (i) Hall voltage and Hall coefficient (ii) the number of charge carriers per unit volume (iii) mobility of charge carriers.
- 5. To study Hall effect in given metal and to determine (i) Hall voltage and Hall coefficient (ii) the number of charge carriers per unit volume (iii) mobility of charge carriers.
- 6. To determine the velocity of ultrasonic waves in a given liquid using ultrasonic interferometer.
- To determine the transition temperature of a high temperature superconductor.
- To prepare a metallic sample and measure the grain size using metallurgical microscope.
- 9. To find the capacitance and permittivity of the given material.
- 10. Dispersion relation of monoatomic and diatomic lattice.

Digital Electronics:

- 11. (a) To study logic gates: OR, AND, NOT, NOR, NAND, XNOR and XOR.
 - (b) To verify De-Morgan's theorems.
- 11. To study: encoder, decoder and ALU
- 12. To study shift registers; and half and full adder/subtractor circuits
- 14. To study:
 - a) ADC and DAC
 - b) pulse width and pulse position modulation/demodulation